Call Graph Construction in Object-Oriented Languages

David Grove, Greg DeFouw, Jeffrey Dean’, and Craig Chambers

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, Washington 98195-2350 USA
{grove, gdefouw, jdean, chambers} @cs.washington.edu

Appeared in OOPSLA 97 Conference Proceedings

Presented by Long Cheng
09/16/2015

Background

* |nterprocedural analysis
— calling relationships among procedures

— optimize compilers to make less conservative
assumptions across procedure call boundaries

— enable substantial improvements in application
performance

Motivation

* A number of call graph construction
algorithms have been proposed

— These algorithms make different trade-offs
between the precision of the resulting call graph
and any associated dataflow information, and the
cost of computing the call graph

— Lack of a general framework to express existing
call graph construction algorithms

Main Contribution

* Develop a common framework for describing a
wide range of existing call graph construction
algorithms

— Present a lattice-theoretic model of context-sensitive
call graphs

* element of the lattice <-> call graph for a program

* Survey existing algorithms
* Implement of the proposed framework and

conduct empirical analysis of cost and benefit of
algorithms

Discussion

Cons

— Too theoretic, abstract and monotonous
language

— No examples for some definitions and

explanations (p. 4 bottom-right, p. 2 bottom-
right, p. 3 top-left)

— No example for demonstrating their framework

— Three possible actions are not consistent (p. 5
left)

Source:
http://www.ptidej.net/courses/ift6310/winter08/presentations2/080312/Present
ation%20-%20Wei%20-%20Call%20Graph%20Construction%20in%200bject-
Oriented%20Languages.pdf

Outline

* Modelling Call Graphs
— Informal Model of Call Graphs
— Formal (Lattice-Theoretic) Model of Call Graphs

* Generalized Call Graph Construction

* Experimental Assessment

Informal Model of Call Graphs

Each of these context-sensitive versions of a

procedure is called a contour.

— a procedure may be analyzed separately for
different calling contexts

procedure main() {

return A() + B() + C(); iiaieg s
}
procedure A() {

return max (4, 7); '

} (2) (B3)(e) (=) (=)
procedure B() { \ AY e
e i integer and floating point parameters
procedure C() { V ‘
} return max(3, 1); max (maxo) (maxl)
(a) Example Program (b) Context-Insensitive (c) Context-Sensitive

Figure 1: Example Program and Call Graphs

Informal Model of Call Graphs

 What does a call graph include
— Calling contour
— Set of callee contour
— Parameter class contour
— Local variable contour
— Procedure result contour

Informal Model of Call Graphs

* The different context-sensitive analyses differ in
how they determine what set of contours to

create for a given procedure and which contours
to select as targets of a given call

* A wide range of context-sensitive call graphs can
be represented by choosing different values for
three parameterizing functions:

— procedure contour selection function
— instance variable contour selection function
— class contour selection function

Formal Model of Call Graphs

* Use lattice-theoretic ideas to formally define
the contour-based model of context-sensitive

call graphs. * Elements are call graphs

* One call graph below another if it is
more conservative (less precise)
than the other

-Gideal * The point G, identifies the “real”

but usually uncomputable call graph,

which can be described precisely as

the greatest lower bound over all

call graphs corresponding to actual

program executions.

empty call
graph

More nodes
& edges

complete
call graph

Regions in a Call Graph Lattice Domain

Formal Model of Call Graphs

* Lattice-Theoretic Model of Call Graphs
S Gideal

‘ iaar |
ﬁ)
EDREDRE

maxg max,

G | .the complete call graph Gigeq - real call graph

Formal Model of Call Graphs

e Soundness

— A call graph is sound (i.e., safely approximates all
possible program executions) if it is at least as
conservative as each of the call graphs

corresponding to possible program executions

Gt

A sound call graph conservatively approximates

the program’s runtime behavior

* Every procedure called during some
program execution is included

e Every call arc traversed during some
program execution is included

Generalized Call Graph Construction

e Qverview

Add needed nodes & edges

Monotonic Refinement
@oves down call graph lattice)

Call Graph Unsound?

Initial Call Graph Call Graph Sound? :
(Construction) > Call Graph p | Final Call Graph

Additional Precision Desired?
Non-Monotonic Improvement
(moves up call graph lattice)

Remove spurious nodes & edges

Generalized Call Graph Construction Algorithm

Generalized Call Graph Construction

* Key parameters

— The choice of domains for

* ProcKey --- space of possible contexts for context-sensitive analysis
of functions

* InstVarKey --- space of possible contexts for
separately tracking the contents of instance variables

» ClassKey --- space of possible contexts for context-sensitive
analysis of classes

— The associated contour selection functions

— The available non-monotonic improvement operations
— Monotonic Refinement

— Initial Call Graph

Generalized Call Graph Construction

e Possi

— Alt
cal

ole Initial Call Graphs

nough it is possible to use any element of the

graph lattice domain as an initial call graph, all

existing algorithms start with one of two opposite
extremes:

* G;: the top element of the call graph lattice (e.g., the

empty call graph)

* G, .the bottom element of the call graph lattice (e.g.,
the complete call graph)

Generalized Call Graph Construction

* Possible Initial Call Graphs

— G;: the top element of the call graph lattice (e.g., the
empty call graph)
* Nodes/edges must be added
* Potential for more precise final call graph

— G| .the bottom element of the call graph lattice (e.g., the
complete call graph)
* No further work required
* May be very imprecise (especially with first-class functions)

* Some (near-)linear-time algorithms:

— Flow-insensitive: Bacon & Sweeney’s Rapid Type Analysis (RTA) algorithm
Steensgaard’s near-linear-time points-to analysis

— Limited flow-sensitive: DeFouw, Grove & Chambers’s k-limited family of
algorithms [POPL 98]

Generalized Call

Graph Construction

* Relative Algorithmic Precision

Optimistic Gpot Oporz Gpron Opross Gipeoss
Mg . 8 WPV
________________ Gie .~ ===
Sound / \\
Gro.cra R
: Gorcrn Gaacr
I e I 7~
Gaocra Geicra Gaacea
L 6! e .|
14.0.CFA 13.1.CFA 12.2.CFA
w2l 2
: . 33.0.CF) 33.1.CF
Gpses Gycps 'ui'”\/ i“\
Gaocra Giicra
il
/(’l.uu.\
Gocra
/ \\Gmnm o)
Gintra(statxc) (;Rl.ummp/ : [
('um!ldynamxl
N [\ (ii‘l.ll / ~ |
(’mud_\vnm) | ('Kl.Md’_\mmxl
™~

schecion

G

The relative precision of the final products of the
various call graph construction algorithms

Generalized Call Graph Construction

* |nstantiating Call Graph Construction
Framework

— To turn framework into specific algorithm:
* Choose an initial call graph construction method

* Choose a contour selection function (e.g., 0-CFA, 1-CFA,
CPA, SCS...)

* Choose a spurious node/edge removal method
(optional)

Experimental Assessment

* Framework has been implemented in Vortex
optimizing compiler
— 4,000 lines of shared code
— 100-300 additional lines per algorithm

— removing spurious node/edge component not
implemented (non-monotonic improvement were
under construction)

Experimental Assessment

Goal: Evaluate costs and benefits on sizeable applications

What are the costs of different call graph construction algorithms?
— Analysis time
— Analysis space

What are the benefits of the resulting call graphs?
— Call graph precision
— Speed-up, resulting from interprocedural optimizations
— Compiled code space, resulting from removing unreachable methods

How practical is interprocedural analysis?

Experimental Assessment

 Benchmark Applications

Program | Lines® Description
) richards 400 | Operating systems simulation
6 Cecil programs
5 Java programs é deltablue 650 | Incremental constraint solver
5 instr sched 2,400 | Global instruction scheduler
o
& | typechecker | 20,000° | Typechecker for old Cecil type system
g new-tc 23,500° Typechecker for new Cecil type system
compiler 50,000 | Old version of the Vortex optimizing
compiler
toba 3,900 | Java bytecode to C code translator
Wl
E java-cup 7,800 | Parser generator
S
)
E espresso 13,800 | Java source to bytecode translator
g javac 25,550 | Java source to bytecode translator®
o]
javadoc 28,950 [Documentation generator for Java

* Analysis time for the flow-insensitive algorithms (G
is linear in the size of the program

* k-I-CFA algorithms are time consuming

* In theory, SCS is worse than b-CPA, but the result of the
experiment showed it is better

* Flow-sensitive algorithms are not suitable for large size

* Cosl programs.

simple

and RTA)

N

Q | . t h Gympte | RTA | 0-CFA® | SCS | b-CPA |1-0-CFA |1-1-CFA | 2-2-CFA | 3-3.CFA
go rl l I IS richards 2 zec 2 sec 3 sec 3 zec 4 zec 4 sec 5 sec 5 zsec 4 zec
16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB
10700 1000 12/22| 20| 24/29| 18730 19/37| 2438 28/40
. oy deltablue 2 sec 2sec 5sec 7 sec 8 zec 6 sec 6 sec 8 sec 10 zec
6 algorlthm families 16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB| 16MB
. 10010 10/10| 14/24[375/425| 48/57| 25/40| 25/40| 36/61| 50/82
(9 algorlth mS) instr sched 6 zec 4 sec 67 sec 83 sec 146 zec 99 sec 109 zec 334 sec 1,795 sec
25SMB| 25MB| SIMB| 96MB| 43MB| 96MB| 96MB| 96MB| 210MB
)) 10/10| 10/10| 14/48| 65/85|11.8/17.0| 35/103 | 35/106 | 67/249| 133/483
Analysis Time (secs), e | B B | e TErp
120MB| SS5MB| 451MB 97.4MB
Heap Space (MB), 10/10| 10/10| 12/46 87/314
new-tc 28 sec 29 sec 1,193 sec 9,942 sac
Contours per Procedure, 65MB| 69MB| 621MB 115.4 MB
10/10| 1010 12/49 $4/270
Analyses per Procedure compler o | 93 | o4l
02MB | 224MB | 2021MB
10/10| 10/10(13/88
toba 35 sec 18 sec 79 sec 67 sec 75 sec 116 sec 1,174 sec 8,636 sec
94MB| 77MB| 198MB| 239MB| 198MB| 203MB| 198MB| 198MB
10710 1010 10/10| 11n3| 13/14| 20/26| 19/37| 38/61
java-cup 80 sec 89 sec 116 sec 112 sec 124 zec 145 sec 2,086 sec

76.1 MB 824MB 76.6 MB 76.1 MB 76.2MB §7.8MB 76.0MB
10/1.0 10/1.0 10/12 12715 14/16 2231 21/57

espresso 49 zec 74 z2c 136 sec 307 sec 305 zec 1,183 sec | 51,646 sec
5.0MB 5.0MB 114MB 200MB 192 MB 306 MB 288MB
10/1.0 10/1.0 10/14 18/25 20/29 37/73 | 36/163

javac 74 sec 35 sec 289 sec 442 sec 562 sec 2,068 sec
276 MB 274MB 274MB 278MB 2I5MB 60.1 MB
10/1.0 10/1.0 10/1.7 22732 23/34 | 45/104
javadoc 66 sec 38 sec 169 sec 165 zec 208 zec 295 sec | 27,991 sec

194MB 19.7MB 274MB 201 MB 19.7MB 204 MB 199MB
10/1.0 10/1.0 10/13 16/19 16/2.0 26/36 21/59

Experimental Assessment

* Cost and Precision of Call Graph Construction
Algorithms

Average Static/Dynamic Callee Procedures for call sitea

Gymple | RTA | 0-CFA | SCS | b-CPA |1-.0-CFA |1-1-CFA |22-CFA |3-3-CFA
richards 74/34 6.7/33 12/19 1.2/19 12/19 12/19 12/19 12/19 12/19
deltablue 10.2/8.1 94/73 14/22 14/22 14/22 14/22 14/22 14/22 14/21
instr sched 224/247 | 16.0/15.8 1.7/34 1.5/3.0 15/30 16/34 1.6/34 15/3.1 1.5/3.0
typechecker 46.7/59.3 | 429/534 | 44/1309 40/119
new-tc 564/602 [528/556 | 40/105 3.8/103
compiler 71.3/232 | 68.1/17.6 100/7.0
toba 24/98 13/39 1.1/26 1.1/26 11/26 11/26 1.0/18 10/1.7
java-cup 32/109 22/69 1.1/2.6 1.1/26 11/26 11/26 1.0/2.1
espresso 22/108 | 2.1/10.1 1.7/9.7 1.7/9.7 1.7/97 1.7/9.7 1.6/8.7
javac 39/11.6 14/68 22/55 22/55 22/55 22755
javadoc 31/111 14/72 1.2/34 1.2/34 1.2/34 12/34 1.1/14

a. Shaded cells correspond to configurations that either did not complete in 24 hours or exhausted available virtual memory (430MB).

* For most programs, the simple interprocedurally flow-
insensitive algorithms, G, ... and RTA, produced little
improvement in execution speed.

* For the Cecil programs, interprocedurally flowsensitive
algorithms (0-CFA and better) provided a significant boost

o Over in performance. Context-sensitivity was less important.

* For the java programs, the improvements are modest.

Cecil Java
1.25
1.00 3 E
o o 0.75
3 9
b5 L
L L
a. o d
0.50 -
0.25 4
0.00 - . ;
richards deltablue instr sched typechecker tc2 compiler toba java-cup espresso javac javadoc

[]base [] Gympre BB RTA [l oCFA []scs []b-cPA [1-0cFA [l 1-1CFA [l 2-2cFA |l 3-3CFA

B3 x + profile Figure 6: Application Execution Speed

Summary of Results

; Compiled
A'}?JX:'S Speed-Up Coﬂe
Space
Cecil
flow insensitive (e] o O
limited flow-sensitive - (- O
context-insensitive -~ (o] o)
context-sensitive © (o) w)
Java
flow insensitive o @] O
limited flow-sensitive - O O
context-insensitive -~ - O
context-sensitive O) O

Excellent @ ™ () & @ Poor

* Programming language/style impacts
e Cecil
* fast algorithms ineffective
e can achieve large speed-up,
but at a high cost
* Java
e analysis time reasonable, but
speed-up small
* Scalability is a major concern for
context-sensitive algorithms
* Even imprecise algorithms enable
substantial code space reduction
e Doing analysis actually reduces
total compile time

Conclusion

e Unified model of call graph construction problem

* Experimental assessment using sizeable programs

e Future work

— Extend algorithmic framework to better include linear-
time algorithms

— Investigating techniques to support incremental
reconstruction of the program call graph and derive

interprocedural information in the presence of program
changes

New Development

* David Grove, Craig Chambers, “A Framework for
Call Graph Construction Algorithms” ACM
Transactions on Programming Languages and
Systems, Vol. 23, No. 6, November 2001, Pages
685—746.

— More formal lattice model
— More examples!

— New version of the framework
* 9,500 lines of Cecil code
* Support only monotonic algorithms
* Wider range of algorithms
* A scalable, near-linear-time algorithm

Acknowledgement

Some pictures are from the following materials:

https://static.aminer.org/pdf/PDF/000/522/227/call sraph construction in
object oriented languages.pdf

http://www.ptidej.net/courses/ift6310/winter08/presentations2/080312/Pre
sentation%20-%20Wei%20-
%20Call%20Graph%20Construction%20in%200bject-
Oriented%20Languages.pdf

Thanks

