
Presented by Long Cheng
09/16/2015

Appeared in OOPSLA ’97 Conference Proceedings

Background

• Interprocedural analysis

– calling relationships among procedures

– optimize compilers to make less conservative
assumptions across procedure call boundaries

– enable substantial improvements in application
performance

Motivation

• A number of call graph construction
algorithms have been proposed

– These algorithms make different trade-offs
between the precision of the resulting call graph
and any associated dataflow information, and the
cost of computing the call graph

– Lack of a general framework to express existing
call graph construction algorithms

Main Contribution

• Develop a common framework for describing a
wide range of existing call graph construction
algorithms
– Present a lattice-theoretic model of context-sensitive

call graphs
• element of the lattice <-> call graph for a program

• Survey existing algorithms

• Implement of the proposed framework and
conduct empirical analysis of cost and benefit of
algorithms

Source:
http://www.ptidej.net/courses/ift6310/winter08/presentations2/080312/Present
ation%20-%20Wei%20-%20Call%20Graph%20Construction%20in%20Object-
Oriented%20Languages.pdf

Outline

• Modelling Call Graphs

– Informal Model of Call Graphs

– Formal (Lattice-Theoretic) Model of Call Graphs

• Generalized Call Graph Construction

• Experimental Assessment

Informal Model of Call Graphs

• Context-insensitive call graphs

– exactly one contour for each procedure

• Context-sensitive call graphs

– a procedure may be analyzed separately for
different calling contexts

Each of these context-sensitive versions of a
procedure is called a contour.

integer and floating point parameters

Informal Model of Call Graphs

• What does a call graph include
– Calling contour

– Set of callee contour

– Parameter class contour

– Local variable contour

– Procedure result contour

Informal Model of Call Graphs

• The different context-sensitive analyses differ in
how they determine what set of contours to
create for a given procedure and which contours
to select as targets of a given call

• A wide range of context-sensitive call graphs can
be represented by choosing different values for
three parameterizing functions:
– procedure contour selection function

– instance variable contour selection function

– class contour selection function

Formal Model of Call Graphs

• Use lattice-theoretic ideas to formally define
the contour-based model of context-sensitive
call graphs.

Regions in a Call Graph Lattice Domain

• Elements are call graphs
• One call graph below another if it is

more conservative (less precise)
than the other

• The point Gideal identifies the “real”
but usually uncomputable call graph,
which can be described precisely as
the greatest lower bound over all
call graphs corresponding to actual
program executions.

empty call
graph

complete
call graph

More nodes
& edges

Formal Model of Call Graphs

G⊥ : the complete call graph

• Lattice-Theoretic Model of Call Graphs

Gideal : real call graph

Formal Model of Call Graphs

• Soundness

– A call graph is sound (i.e., safely approximates all
possible program executions) if it is at least as
conservative as each of the call graphs
corresponding to possible program executions

A sound call graph conservatively approximates
the program’s runtime behavior
• Every procedure called during some

program execution is included
• Every call arc traversed during some

program execution is included

Generalized Call Graph Construction

Generalized Call Graph Construction Algorithm

Add needed nodes & edges

Remove spurious nodes & edges

• Overview

Generalized Call Graph Construction

• Key parameters
– The choice of domains for

• ProcKey --- space of possible contexts for context-sensitive analysis
of functions

• InstVarKey --- space of possible contexts for
separately tracking the contents of instance variables

• ClassKey --- space of possible contexts for context-sensitive
analysis of classes

– The associated contour selection functions

– The available non-monotonic improvement operations

– Monotonic Refinement

– Initial Call Graph

Generalized Call Graph Construction

• Possible Initial Call Graphs

– Although it is possible to use any element of the
call graph lattice domain as an initial call graph, all
existing algorithms start with one of two opposite
extremes:

• GT: the top element of the call graph lattice (e.g., the
empty call graph)

• G⊥: the bottom element of the call graph lattice (e.g.,
the complete call graph)

Generalized Call Graph Construction

• Possible Initial Call Graphs
– GT: the top element of the call graph lattice (e.g., the

empty call graph)
• Nodes/edges must be added
• Potential for more precise final call graph

– G⊥: the bottom element of the call graph lattice (e.g., the
complete call graph)
• No further work required
• May be very imprecise (especially with first-class functions)
• Some (near-)linear-time algorithms:

– Flow-insensitive: Bacon & Sweeney’s Rapid Type Analysis (RTA) algorithm
Steensgaard’s near-linear-time points-to analysis

– Limited flow-sensitive: DeFouw, Grove & Chambers’s k-limited family of
algorithms [POPL ‘98]

Generalized Call Graph Construction

• Relative Algorithmic Precision

The relative precision of the final products of the
various call graph construction algorithms

Generalized Call Graph Construction

• Instantiating Call Graph Construction
Framework

– To turn framework into specific algorithm:

• Choose an initial call graph construction method

• Choose a contour selection function (e.g., 0-CFA, 1-CFA,
CPA, SCS…)

• Choose a spurious node/edge removal method
(optional)

Experimental Assessment

• Framework has been implemented in Vortex
optimizing compiler

– 4,000 lines of shared code

– 100-300 additional lines per algorithm

– removing spurious node/edge component not
implemented (non-monotonic improvement were
under construction)

Experimental Assessment

• Goal: Evaluate costs and benefits on sizeable applications

• What are the costs of different call graph construction algorithms?
– Analysis time
– Analysis space

• What are the benefits of the resulting call graphs?
– Call graph precision
– Speed-up, resulting from interprocedural optimizations
– Compiled code space, resulting from removing unreachable methods

• How practical is interprocedural analysis?

Experimental Assessment

• Benchmark Applications

6 Cecil programs
5 Java programs

Experimental Assessment

• Cost and Precision of Call Graph Construction
Algorithms

Analysis Time (secs),
Heap Space (MB),
Contours per Procedure,
Analyses per Procedure

6 algorithm families
(9 algorithms)

• Analysis time for the flow-insensitive algorithms (Gsimple and RTA)
is linear in the size of the program

• k-l-CFA algorithms are time consuming
• In theory, SCS is worse than b-CPA, but the result of the

experiment showed it is better
• Flow-sensitive algorithms are not suitable for large size

programs.

Experimental Assessment

• Cost and Precision of Call Graph Construction
Algorithms

Average Static/Dynamic Callee Procedures for call sitea

Experimental Assessment

• Overall Impact

• For most programs, the simple interprocedurally flow-
insensitive algorithms, Gsimple and RTA, produced little
improvement in execution speed.

• For the Cecil programs, interprocedurally flowsensitive
algorithms (0-CFA and better) provided a significant boost
in performance. Context-sensitivity was less important.

• For the java programs, the improvements are modest.

Summary of Results

• Programming language/style impacts
• Cecil

• fast algorithms ineffective
• can achieve large speed-up,

but at a high cost
• Java

• analysis time reasonable, but
speed-up small

• Scalability is a major concern for
context-sensitive algorithms

• Even imprecise algorithms enable
substantial code space reduction
• Doing analysis actually reduces

total compile time

Conclusion

• Unified model of call graph construction problem

• Experimental assessment using sizeable programs

• Future work

– Extend algorithmic framework to better include linear-
time algorithms

– Investigating techniques to support incremental
reconstruction of the program call graph and derive
interprocedural information in the presence of program
changes

New Development

• David Grove, Craig Chambers, “A Framework for
Call Graph Construction Algorithms” ACM
Transactions on Programming Languages and
Systems, Vol. 23, No. 6, November 2001, Pages
685–746.
– More formal lattice model
– More examples!
– New version of the framework

• 9,500 lines of Cecil code
• Support only monotonic algorithms
• Wider range of algorithms
• A scalable, near-linear-time algorithm

Acknowledgement

Some pictures are from the following materials:

https://static.aminer.org/pdf/PDF/000/522/227/call_graph_construction_in_
object_oriented_languages.pdf

http://www.ptidej.net/courses/ift6310/winter08/presentations2/080312/Pre
sentation%20-%20Wei%20-
%20Call%20Graph%20Construction%20in%20Object-
Oriented%20Languages.pdf

Thanks

